Course Number	CS 480	Course Title	Computational Statistics II				
Semester Hours	3	Course Coordinator	Sharon Huang				
Catalog Description	This course utilizes computational and graphical approaches to solve statistical problems. A comprehensive coverage on modern and classical methods of statistical computing will be given. Case studies in various disciplines such as science, engineering, and education will be discussed. Various topics such as numerical integration and simulation, optimization and maximum likelihood estimation, density estimation and smoothing as well as re-sampling will be presented. Students will be able to create graphical and numerical display based on their data analysis results using R programming language.						
Textbooks							

James, G. (2017). *An Introduction to Statistical Learning with Applications in R*. Springer, 8th edition. ISBN: 9781461471370, eBook ISBN: 9781461471387.

SP20

References

Course Learning Outcomes

- Develop analytical and computational skills for statistical inference
- Write software in R language to implement statistical procedures
- Implement a combination of statistical toolkits for analyzing real data sets

Assessment of the Contribution to Student Outcomes

Outcome	1	2	3	4	5	6
Assessed	X	X				X

Prerequisites by Topic

MATH 250 and CS 306 or CS 330 with a grade of C or better or graduate standing.

CS 4	180	Computational Statistics II	Page 2			
	Major Topics Covered in the Course					
1.	Overvi	ew and review (3 lectures)				
		Course introduction				
	b.	Probability and statistics review				
2.		action to R (2 lectures)				
		Overview of R, Vectors, matrices and data frames				
	b.	R lab				
3.	Data m	nanipulation in R (3 lectures)				
	a.	Data manipulation and summarization and visualization				
		Basic graphics				
4.	Visuali	zation of Multivariate data (4 lectures)				
	a.	Surface plots and 3D scatter plots				
	b.	Contour plots				
		Other 2D representations of data				
5.		tions (5 lectures)				
		Generating random variables				
		Markov Chain				
6.		ility density estimation (4 lectures)				
		Univariate density estimation				
_		Kernel density estimation				
7.		Carlo integration and methods in inference (6 lectures)				
		Monte Carlo integration				
		Variance reduction				
		Monte Carlo method for estimation				
	d.	Monte Carlo method for hypothesis test				

8. Numerical optimization and maximum likelihood estimation (4 lectures)
9. Resampling methods (4 lectures)
10. Presentation and discussion (5 lectures)

Latest Revision: Spring 2020