Course Number	CS 455	Course Title	Advanced Algorithm	n Design and	Analysis	
Semester Hours	3	Course	Banafsheh Rekabda	ır		
		Coordinator				
Catalog Description	An in-depth treatment of the design, analysis and complexity of algorithms with an					
2 to the priori	emphasis on problem analysis and design techniques.					
Textbooks FA18						
Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. (2009). <i>Introduction to Algorithms</i> . MIT Press, 3 rd Edition. ISBN: 9780262033848.						
References						
Course Learning Outcomes						
• Deeper understanding of algorithm design.						
• To learn the design techniques for efficient algorithms.						
• To learn the methods for analyzing the complexity of the algorithms.						
• To design algorithms with an emphasis on proving the correctness and proving the optimality in terms						
of time efficiency.						
• To learn the basic concepts of NP-completeness and approximation algorithms.						
Assessment of the Contribution to Student Outcomes						
Outcome →	1	2	3 4	5	6	
Assessed →	X	X	X X	X	X	
Prerequisites by Topic						
CS 330 with a grade of C or better or graduate standing.						

CS 45	5 Advanced Algorithm Design and Analysis	Page 2				
Major Topics Covered in the Course						
1.	1. Mathematical preliminaries: principles and examples of algorithm analysis, recurrence relationships, worst case analysis {4 classes}					
2.	2. Asymptotically tight bounds: lower/upper bounds for finding minimum and sorting, lower bound					
	analysis, growth rate of various functions {4 classes}					
3.	3. Divide-and-conquer: merge sort, quick sort, median selection, polynomial algorithms, and matrix					
	algorithms, shortest distance, fast Fourier transform (FFT) {8 classes}					
4.	Greedy algorithms: elements of the greedy strategy, minimum spanning tree, shortest path, proof					
	of optimality{5 classes}					
5.	Advanced graph algorithms: bi-connected components, strongly connected com	ponents, flow				
	algorithms {5 classes}					
6.	Dynamic programming: optimal secondary structure prediction, optimal search tree	s, approximate				
	string matching, Floyd's algorithm {6 classes}					
7.	NP-completeness and approximation algorithms {4 classes}					
8.	PRAM algorithms {4 classes}					
	Latest	Revision: Fall 2020				