Course Number	CS 434	Course Tit	le Learni	ng from Data			
Semester Hours	3	Course Coordinate	Norma or	n Carver			
Catalog An introduction to classical machine learning theory and practical techniques. Topics to be covered include computational learning theory (VC theory), linear classification and regression models, SVMs and kernel methods, decision trees, the bias-variance tradeoff, overfitting, and regularization. Textbooks							
References							
 Mitchell, T. (1997). Machine Learning. McGraw-Hill Education. ISBN: 978-0070428072. Bishop, C. (2013). Pattern Recognition and Machine Learning. Springer. ISBN: 978-8132209065. Course Learning Outcomes 							
 Obtain the theoretical knowledge needed to understand the basis of machine learning. Obtain knowledge of classical machine learning methods. Obtain practical knowledge for successfully applying standard learning methods to real-world problems. 							
Assessment of the Contribution to Student Outcomes							
Outcome →	1	2	3	4	5	6	
Assessed →	X					Х	
Prerequisites by Topic							
CS 330 with a grade of <i>C</i> or better or graduate standing.							

CS 434	Learning from Data	Page 2			
Major Topics Covered in the Course					
1. Int	roduction to Machine Learning (3 lectures)				
2. Co	mputational Learning Theory (6 lectures)				
3. Li	near Models for Learning (12 lectures)				
4. Su	pport Vector Machines and Kernel Methods (9 lectures)				
5. De	cision Tree Learning (3 lectures)				
6. Iss	ues in Machine Learning (7 lectures)				
		Revised: Fall 2020			