Course Number	CS 408	Course Title	Applied C	c <mark>ryptograp</mark> h	Ŋ		
Semester Hours	3	Course Coordinator	Bidyut Gupta				
Catalog Description	This course is a comprehensive introduction to modern cryptography, with an emphasis on the application and implementation of various techniques for achieving message confidentiality, integrity, authentication and non-repudiation. Applications to Internet security and electronic commerce will be discussed. All background mathematics will be covered in the course.						
Textbooks							
Stallings, W. (2017). Cryptography & Network Security. Pearson, 7th Ed. ISBN: 9780134444635.							
References							
Course Learning Outcomes							
 To understand the design principles of modern cryptographic algorithms. To learn a variety of cryptanalytic and side-channel attacks. To understand how cryptography is deployed in practice, with an emphasis on its application in network security. To learn how to implement cryptographic algorithms with symbolic computation software. 							
Assessment of the Contribution to Student Outcomes							
Outcome →	1	2	3	4	5	6	
Assessed \rightarrow	Х	X			Х	Х	
Prerequisites by Topic							
CS 330 with a grade of C or better and MATH 221 or graduate standing.							

CS 40	8 Applied Cryptography	Page 2				
Major Topics Covered in the Course						
1.	Symmetric-key encryption: classical ciphers, one-time pad, stream ciphers (RC4), Fei DES, AES, modes of operation {8 classes}	stel networks,				
2.	2. Message integrity: hash functions, Merkle's Meta method, parallel collision search, message authentication codes (CBC-MAC, HMAC) {5 classes}					
3.	Key escrow and secret sharing {2 classes}					
4.	Public-key encryption: RSA, ElGamal, padding schemes, semantic security {9 classe	es}				
5.	Signature schemes: RSA, DSA, ECDSA {3 classes}					
6.	Pseudorandom bit generation: random bit generation, cryptographically strong pseu generators, Yao's Theorem {2 classes}	idorandom bit				

00.400

- 7. Key establishment and management: key distribution centers, Diffie-Hellman and station-to-station key agreement, Merkle authentication trees, certificate authorities, public key infrastructures {3 classes}
- 8. Deployed cryptography: Kerberos, PGP, SSL/TLS, WEP/WPA, digital payment systems (SET, e-cash, micropayments), electronic voting {6 classes}
- 9. Selected advanced topics: zero-knowledge proofs, strong password protocols (EKE/STP), identitybased encryption, broadcast encryption, oblivious transfer {2 classes}

Latest Revision: Fall 2020