
Course Number CS 311 Course Title Theory and Implementation of Programming
Languages

Semester Hours 3 Course
Coordinator

SP20

Norman Carver

Catalog
Description

Introduction to the theory and implementation of programming languages including

finite automata, regular grammars, lexical analysis, parsing, syntax-directed

translation, semantic analysis, binding variables, data types, static and dynamic scope,

subprograms, abstraction, and concurrency. Study of object-oriented, functional, and

logic programming languages. Lab work is essential.
Textbooks

SP20

Sebesta, R.W. (2019). Concepts of Programming Languages, Pearson, 12th Edition. ISBN:
9780134997186.

References
SP19

Kirk, D.B. & Hwu, W-M. (2017). Programming Massively Parallel Processors: A Hands-on Approach,
Elsevier, 3rd Edition. ISBN: 978-0128119860.

Gropp, W., Lusk, E. & Skjellum, A. (2014). Using MPI: Portable Parallel Programming with the
Message-Passing Interface, MIT, 3rd Edition. ISBN: 978-0262527392.

 Course Learning Outcomes

• To obtain background on compilers and language compilation

• To understand the basics of the theory of computing applied to develop programming languages

• To learn the features and capabilities those are available in programming languages

• To understand the issues in implementing various programming language features

• To learn the effect of languages on problem solving and programming process

Assessment of the Contribution to Student Outcomes

 Outcome  1 2 3 4 5 6

Assessed  X X X

 Prerequisites by Topic

CS 220 with a grade of C or better

CS 311 Theory and Implementation of Programming languages Page 2

 Major Topics Covered in the Course

1. Introduction: domains, language evaluation criteria, language categories, implementation methods
{3 classes}

2. Syntax and semantics: formal methods of describing syntax, attribute grammars, dynamic
semantics {6 classes}

3. Finite automata: deterministic and nondeterministic finite automata, regular grammars
{5 classes}

4. Lexical and syntax analysis: recursive-descent parsing, bottom-up parsing {5 classes}
5. Variables: names, binding, types, scope, lifetime {2 classes}
6. Basic data types: implementations of integers, strings, etc. {2 classes}
7. Expressions: operators, assignment, precedence, associatively, side effects, overloading, coercion

{2 classes}
8. Subprograms: procedural abstraction, generic functions, parameter passing, recursion

{2 classes}
9. Abstract data types: data abstraction, user-defined data types, encapsulation, information hiding

{2 classes}
10. Concurrency: monitors, threads {2 classes}
11. Exception and event handling {2 classes}
12. Object-oriented programming: basic features, alternative models, implementation requirements

{3 classes}
13. Functional and logic programming: clips, lisp, scheme {4 classes}

Latest Revision: Fall 2020

