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Introduction to the theory and implementation of programming languages including 

finite automata, regular grammars, lexical analysis, parsing, syntax-directed 

translation, semantic analysis, binding variables, data types, static and dynamic scope, 

subprograms, abstraction, and concurrency. Study of object-oriented, functional, and 

logic programming languages. Lab work is essential. 
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 Course Learning Outcomes 

• To obtain background on compilers and language compilation 

• To understand the basics of the theory of computing applied to develop programming languages 

• To learn the features and capabilities those are available in programming languages 

• To understand the issues in implementing various programming language features  

• To learn the effect of languages on problem solving and programming process  

 
Assessment of the Contribution to Student Outcomes 

 Outcome  1 2 3 4 5 6 
 
 
 
 

Assessed  X X    X 

 Prerequisites by Topic 

CS 220 with a grade of C or better 
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 Major Topics Covered in the Course 
 

1. Introduction: domains, language evaluation criteria, language categories, implementation methods 
{3 classes} 

2. Syntax and semantics: formal methods of describing syntax, attribute grammars, dynamic 
semantics {6 classes} 

3. Finite automata: deterministic and nondeterministic finite automata, regular grammars 
{5 classes} 

4. Lexical and syntax analysis: recursive-descent parsing, bottom-up parsing {5 classes} 
5. Variables: names, binding, types, scope, lifetime {2 classes} 
6. Basic data types: implementations of integers, strings, etc. {2 classes} 
7. Expressions: operators, assignment, precedence, associatively, side effects, overloading, coercion 

{2 classes} 
8. Subprograms: procedural abstraction, generic functions, parameter passing, recursion  

{2 classes} 
9. Abstract data types: data abstraction, user-defined data types, encapsulation, information hiding 

{2 classes} 
10. Concurrency: monitors, threads {2 classes} 
11. Exception and event handling {2 classes} 
12. Object-oriented programming: basic features, alternative models, implementation requirements 

{3 classes} 
13. Functional and logic programming: clips, lisp, scheme {4 classes} 
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