Course Number	CS 202	Course Title	Introduction to Computer Science				
Semester Hours	4	Course	Rana Salameh				
		Coordinator					
		SP20					
Catalog							
Description	An introduction to computers and programming using a high-level structured						
Description	language including a discussion of programming constructs and data representation.						
	Primary emphasis will be given to problem solving, algorithm design, and program						
	development. The course meets for three lecture hours and two laboratory hours per week.						

Textbooks

SP20

Gaddis, T. (2018). *Starting Out With Java: From Control Structures Through Objects*. Prentice Hall Publications, 7th Edition. ISBN-9780134802213.

References

Course Learning Outcomes

- To understand the fundamentals of computer hardware and software.
- To learn programming and object-oriented design using Java.
- To learn a disciplined and structured approach to the development of computerized solutions to problems.
- To obtain a good foundation for further study in computer science.

Assessment of the Contribution to Student Outcomes								
Outcome →	1	2	3	4	5	6		
Assessed →		X				X		

Prerequisites by Topic

Mathematics 111 or equivalent with a grade of C or better.

Major Topics Covered in the Course

1. Basic Concepts of Computer Systems

Computer organization and hardware: CPU, memory unit, I/O devices

Software: programs, operating systems, editors, compilers

Interacting with the operating system; using a screen editor; file system invoking the compiler Computer systems: batch systems, interactive systems, mainframes, minicomputers, micros, networks

Programming languages: machine language, assembler language, high-level languages

Program Translation: source program, object program, compiler {2 classes}

2. Problem Solving Algorithms

Strategies: divide and conquer, special cases, generalization

Analysis: understanding the problem, specifying inputs and outputs

Pseudo code verification: hand checking, test data {3 classes}

3. Program Design and Development

Design methodologies: top-down, bottom-up, and combinations of the two, procedural abstraction, data abstraction, information hiding, object-oriented design

Structured programming techniques: use of appropriate control structure

Programming style: appropriate indentation, good identifier names

Trogramming styre, appropriate indentation, good identifier name

Documentation: appropriate commenting, self-documenting code

Testing and verification: bottom-up, top-down, debugging techniques {3 classes}

4. The Basics

Primitive data types; constants, variables and identifiers; named constants; arithmetic expressions; assignment statements {3 classes}

5. Input and Output

Console input and output, screen input and output, file input and output {3 classes}

6. Flow of Control

Conditions and logical expressions, relational operators, precedence rules

Conditional execution structures: if, if-else, switch

Iterative control structures: while, do-while, for

Nesting of control structures {6 classes}

7. Methods

Defining and calling methods; parameters; local variables; value returning methods and void methods; pre and post conditions {4 classes}

8. Arrays

 $Definition, processing, one-dimensional, two \ dimensional\\$

Elementary searching and sorting {6 classes}

9. Strings {2 classes}

10. Classes and Objects

Constructors; instance variables and instance methods; static variables and static methods; Overloading; instantiation of objects using the new operator; private and public; polymorphism and dynamic binding; inheritance and interfaces; encapsulation {6 classes}

Latest Revision: Spring 2020