<table>
<thead>
<tr>
<th>Dept Number</th>
<th>CS 514</th>
<th>Course Title</th>
<th>Advanced Operating Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Hours</td>
<td>3</td>
<td>Course Coordinator</td>
<td>Bidyut Gupta</td>
</tr>
</tbody>
</table>

Textbooks

References

Course Learning Outcomes

- Performance analysis of different algorithms used to design various components of operating systems
- To introduce more advanced concepts like distributed and network OS
- To prepare the student for further specialized study in any specific area of operating systems

Assessment of the Contribution to Program Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessed</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites by Topic

CS 335 with a grade of C or better.

CS 514 | Advanced Operating Systems | Page 2

Major Topics Covered in the Course
1. Concurrent processes
 Mutual exclusion, synchronization
2. Processor scheduling
 Multiprocessor systems, tree-structured precedence graphs, list scheduling, preemptive and non-pre-emptive scheduling
3. Storage allocation in paging systems
 Optimal paging, working set, stack algorithms, extension problems
4. Distributed operating systems
 Mutual exclusion, deadlock
5. Case study Fault tolerance in distributed computing environment (including mobile computing environment)
6. Parallel compilers
7. Future directions of parallel and distributed computing systems