<table>
<thead>
<tr>
<th>Dept Number</th>
<th>CS 503</th>
<th>Course Title</th>
<th>Fault-Tolerant Computing Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Hours</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Coordinator</td>
<td>Bidyut Gupta</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Catalog Description
An introduction to different aspects of fault-tolerance in computing systems. Redundancy techniques with an emphasis on information redundancy, software fault-tolerance, coding techniques, algorithm-based fault-tolerance, fault-tolerant interconnection network architecture, DFT techniques, and quantitative evaluation methods.

Textbooks

References

Course Learning Outcomes
- To give the students an introduction to the different aspects of fault detection, diagnosis and tolerance in computer systems in general.
- To prepare the background such that students will be able to carry out further work in a more specialized fashion in any of these areas.

Assessment of the Contribution to Program Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessed</td>
<td>X</td>
</tr>
</tbody>
</table>

Prerequisites by Topic

CS 401.

Major Topics Covered in the Course
1. Introduction: Fault Characterization, reliability modeling, physical faults and fault models. {4 classes}

2. Test generation in digital systems: concepts, structural level and functional level test generation, random testing. {6 classes}

3. Design for testability: testability measures, scan techniques, testable networks, syndrome testability. {6 classes}

4. Fault Simulation: simulation models, algorithms for simulation and evaluation, parallel and deductive fault simulation. {6 classes}

5. Coding Techniques: parity check, unidirectional, arithmetic and communication codes and properties, self-checking circuits, fault-tolerant combinational and sequential machines. {6 classes}

6. System Diagnosis: Digraph models, diagnosability analysis and algorithms, distributed diagnosis. {6 classes}

7. Fault-tolerant VLSI based architectures: Interconnection networks, binary cube, graph networks, dynamic reconfiguration. {6 classes}