Revision Date: Fall 2013

Dept Number	CS 408	Course Title	Applied Cryptography						
Semester Hours	3	Course Coordinator	Qiang Cheng						
Catalog	This course is a comprehensive introduction to modern cryptography, with an								
Description	emphasis on the application and implementation of various techniques for achieving								
	message confidentiality, integrity, authentication and non-repudiation. Applications								
	to Internet security and electronic commerce will be discussed. All background								
	mathematics will be covered in the course.								
Taythooks									

Textbooks

Stallings, William. *Cryptography and Network Security: Principles and Practice*. Prentice Hall, 6th Edition, 2012. ISBN: 9780133354690.

References

- Alfred Menezes, Paul van Oorschot and Scott Vanstone, Handbook of Applied Cryptography, CRC Press, 1997. (Available at: http://www.cacr.math.uwaterloo.ca/hac).
- Bruce Schneider, Applied Cryptography, 2nd Ed., John Wiley & Sons, 1996.
- Douglas Stinson, Cryptography: Theory and Practice, 3rd Ed., CRC Press, 2006.
- William Stallings, Cryptography and Network Security, 4th Ed., Prentice Hall, 2006.
- Charlie Kaufman, Radia Perlman and Mike Speciner, Network Security: Private Communication in a Public World, 2nd Ed., Prentice Hall, 2003.
- Neal Koblitz, a Course in Number Theory and Cryptography, Springer-Verlag, 2nd Ed., 1994.

Course Learning Outcomes

- To understand the design principles of modern cryptographic algorithms.
- To learn a variety of cryptanalytic and side-channel attacks.
- To understand how cryptography is deployed in practice, with an emphasis on its application in network security.
- To learn how to implement cryptographic algorithms with symbolic computation software.

Assessment of the Contribution to Program Outcomes										Date:	
										Fall 2013	
Outcome →	1	2	3	4	5	6	7	8	9	10	
Assessed →	X	X	X	X	X	X					

Prerequisites by Topic

CS 330 with a grade of C or better and MATH 221

Major Topics Covered in the Course

- 1. Symmetric-key encryption: classical ciphers, one-time pad, stream ciphers (RC4), Feistel networks, DES, AES, modes of operation {8 classes}
- 2. Message integrity: hash functions, Merkle's Meta method, parallel collision search, message authentication codes (CBC-MAC, HMAC) {5 classes}
- 3. Key escrow and secret sharing {2 classes}
- 4. Public-key encryption: RSA, ElGamal, padding schemes, semantic security {9 classes}
- 5. Signature schemes: RSA, DSA, ECDSA {3 classes}
- 6. Pseudorandom bit generation: random bit generation, cryptographically strong pseudorandom bit generators, Yao's Theorem {2 classes}
- 7. Key establishment and management: key distribution centers, Diffie-Hellman and station-tostation key agreement, Merkle authentication trees, certificate authorities, public key infrastructures {3 classes}
- 8. Deployed cryptography: Kerberos, PGP, SSL/TLS, WEP/WPA, digital payment systems (SET, e-cash, micropayments), electronic voting {6 classes}
- 9. Selected advanced topics: zero-knowledge proofs, strong password protocols (EKE/STP), identity-based encryption, broadcast encryption, oblivious transfer {2 classes}