This course is a comprehensive introduction to modern cryptography, with an emphasis on the application and implementation of various techniques for achieving message confidentiality, integrity, authentication and non-repudiation. Applications to Internet security and electronic commerce will be discussed. All background mathematics will be covered in the course.

Textbooks

References

Course Learning Outcomes

- To understand the design principles of modern cryptographic algorithms.
- To learn a variety of cryptanalytic and side-channel attacks.
- To understand how cryptography is deployed in practice, with an emphasis on its application in network security.
- To learn how to implement cryptographic algorithms with symbolic computation software.

Assessment of the Contribution to Student Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessed</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prerequisites by Topic

CS 330 with a grade of C or better and MATH 221.

<table>
<thead>
<tr>
<th>Prerequisites by Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 408</td>
</tr>
<tr>
<td>Page 2</td>
</tr>
</tbody>
</table>

Major Topics Covered in the Course

1. Symmetric-key encryption: classical ciphers, one-time pad, stream ciphers (RC4), Feistel networks, DES, AES, modes of operation {8 classes}
2. Message integrity: hash functions, Merkle's Meta method, parallel collision search, message authentication codes (CBC-MAC, HMAC) {5 classes}
3. Key escrow and secret sharing {2 classes}
4. Public-key encryption: RSA, ElGamal, padding schemes, semantic security {9 classes}
5. Signature schemes: RSA, DSA, ECDSA {3 classes}
6. Pseudorandom bit generation: random bit generation, cryptographically strong pseudorandom bit generators, Yao’s Theorem {2 classes}
7. Key establishment and management: key distribution centers, Diffie-Hellman and station-to-station key agreement, Merkle authentication trees, certificate authorities, public key infrastructures {3 classes}
8. Deployed cryptography: Kerberos, PGP, SSL/TLS, WEP/WPA, digital payment systems (SET, e-cash, micropayments), electronic voting {6 classes}
9. Selected advanced topics: zero-knowledge proofs, strong password protocols (EKE/STP), identity-based encryption, broadcast encryption, oblivious transfer {2 classes}

Latest Revision: Spring 2017