Dept Number	CS 404	Course Title	Autonomous Mobile Robots					
Semester Hours	3	Course Coordinator	Henry Hexmoor					
Catalog Description	This course is a comprehensive introduction to modern robotics with an emphasis or autonomous mobile robotics. Fundamental of sensors and actuators as well as algorithms for top level control are discussed. Multi-robotics and human-robotic interaction issues are explored. A group project is an integral part of this course.							

Textbooks

SP17

<u>Principles Of Robot Motion: Theory, Algorithms & Implementations</u>, Choset, Lynch, Hutchinson, Kantor, Burgard, Kavraki & Thrun, 1st Edition, 2005, MIT Press Publisher, ISBN: 9780262033275.

References

- Probabilistic Robotics, Thrun, S., W. Burgard and D. Fox. MIT Press, 2005.
- Planning Algorithms, LaValle, S. Cambridge University Press, 2006.
- Behavior-Based Robotics, Arkin, RMIT Press, 1998.
- Autonomous Robots, Bekey, G MIT press, 2005.
- Computational Principles of Mobile Robotics, Dudek, G. Cambridge University Press, 2005.
- Mobile Robots: Inspiration to Implementation, Jones, Flynn. AK Peters, 1998.

Course Learning Outcomes

- To understand the robotic platforms and their limitations.
- To learn to program mobile robots.
- To design automations solutions using mobile robots.

Assessment of the Contribution to Student Outcomes										
Outcome >	1	2	3	4	5	6	7	8	9	10
Assessed →	X	X	X				X			

Prerequisites by Topic

CS 330 with a grade of *C* or better.

CS 404	Autonomous Mobile Robots	Page 2			
Major Topics Covered in the Course					
1. In	roduction {2 classes}				
2. Ro	bot body {4 classes}				
3. Au	3. Autonomy {2 classes}				
4. Se	4. Sensing and Perception {6 classes}				
5. Co	5. Control Loop {4 classes}				
6. Lo	6. Locomotion, and Kinematics and mapping {6 classes}				
7. Ad	vanced control loop {4 classes}				
8. H	man-robot interaction {2 classes}				
9. M	ulti-robotics: Formations, self-organization, collaboration {10 classes}				
	Late	at Revision: Spring 17			

M 12 D 1 4

00.404

Latest Revision: Spring 17