Dept Number
CS 220

Course Title
Programming with Data Structures

<table>
<thead>
<tr>
<th>Semester Hours</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Coordinator</td>
<td>Justin Selgrad</td>
</tr>
</tbody>
</table>

Catalog Description
Advanced programming, data structures and algorithm design. Topics included advanced language features, data abstraction and object-oriented programming, recursion, stacks, queues, linked lists, trees and graphs, sorting and searching. The course meets for three lecture hours and two laboratory hours per week.

Textbooks

Course Learning Outcomes

- To learn data abstraction and object-oriented programming.
- To learn the fundamental data structures including stacks, queues, linked lists, and trees.
- To learn sorting and searching techniques and their analysis.
- To obtain a good foundation for further study in computer science.

Assessment of the Contribution to Student Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessed</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites by Topic

CS 202 and CS 215 each with a grade of C or better.
Major Topics Covered in the Course

1. Review of programming; arrays, structures and object oriented programming approach {3 classes}
2. Programming methodology
 Design techniques: in-depth treatment of procedural and data abstraction, further emphasis on top-down design, choice of data structures
 Coding: additional emphasis on programming style, object oriented programming, and documentation, information hiding
 Correctness: testing and test data, testing end cases, debugging techniques, verification of algorithms, invariants {3 classes}
3. Data abstraction and object-oriented programming: levels of abstraction; polymorphism, inheritance, encapsulation {2 classes}
4. Reference and dynamic allocation: dynamic allocation; reference parameters {5 classes}
5. Implementation of data structures: lists and linear structures; stacks and queues; trees and graphs; hash table {14 classes}
6. Recursion
 Implementation: memory and time considerations; simulating recursion
 Efficiency considerations: recursive vs. iterative solutions {14 classes}
 Searching: linear search – review of linear search, searching linked lists, analysis
 Binary search: review of binary search of arrays, binary search trees, analysis {6 classes}
7. Searching and sorting: linear search; binary search; introduction to formal analysis of algorithms
 \(N^2 \) sorts: analysis of bubble sort, insertion sort, and selection sort
 \(N\log N \) sorts: quick sort, merge sort, analysis of these sorts {7 classes}