Table of Contents

I. **Introduction** ...1

II. **Program Description** ...1
 - Bachelor of Science Degree, College of Science ...2
 - Bachelor of Arts Degree, College of Science ...3
 - Concentrations for BS and BA programs ...3
 - Minor ..4

III. **University Requirements** ..4

IV. **College of Science Requirements** ...4
 - Biological Sciences ..4
 - Physical Sciences ...5
 - Supportive Skills ..5
 - General Requirements ..5

V. **Major Requirements** ...5
 - Computer Science Core ...5
 - Computer Science Electives ...6
 - Senior Project ...7
 - Mathematics ..7
 - Science ...7
 - Secondary Concentration ..7

VI. **New Students and Advisement** ...8
 - New Students ...8
 - Advisement ..8
 - Important Facts ...9

VII. **Advisement Materials** ...9
 - Computer Science Course Listings ...9
 - Prerequisite Structure ..16
 - Programming Load and Mathematical Level of Sophistication17
 - Sample Curriculum – BS Degree ...18
 - Sample Curriculum – BA Degree ...19
 - Tentative Course Offerings ..21
 - Four-Year Plan ..22
 - Record of Courses and Grades – BS Degree ...23
 - Record of Courses and Grades – BA Degree ...24

VIII. **Other Important Information** ...25
 - Computer Science Accounts ...25
 - Departmental Scholarships ...25
 - Scholarship for High School Seniors ...25

IX. **University Contact Information** ...26

X. **Departmental Contact Information** ...27
I. Introduction

This booklet is designed to accomplish two main purposes. First, if you are a prospective student, the information it contains should help you make an informed decision about whether or not to study Computer Science at Southern Illinois University Carbondale. Second, if you choose to attend SIUC, it assembles in a comprehensive manner all the information about the Computer Science curriculum. This information should assist in properly advising you throughout your course of study.

Section II contains the official catalog description as it appears in the current Undergraduate Catalog. As you examine the catalog description, keep in mind that to obtain either degree at SIUC you must meet University requirements, University Core Curriculum requirements, College of Science requirements, and departmental requirements.

The next four sections explain the requirements. Section III outlines the University requirements. Section IV contains detailed information about the 41-hour University Core Curriculum requirement. However, the Undergraduate Catalog is the final authoritative source and should be consulted along with an advisor, if you have any questions regarding University Core Curriculum requirements. Section V lists the College of Science requirements. Section VI details the requirements in the major.

Section VII discusses what is expected of new students in Computer Science at SIUC, including entering freshmen and transfer students. More details about the advisement process are also explained.

Section VIII contains information designed to assist you in the advisement process and help you graduate in the minimal amount of time. It begins with a listing of the courses offered by the Department of Computer Science. Tree diagrams showing the prerequisite structure of the Computer Science courses follow. These diagrams can be used to insure that you meet the prerequisites of courses you plan to take. A table listing a subjective estimate of the amount of programming (programming load) required in each course is included. You can use this table to avoid concurrently taking several courses with heavy programming loads. This table also indicates the mathematical level of sophistication (mathematical level) of each Computer Science course. A sample curriculum for both degrees in Computer Science is also presented. The sample curriculums are not necessarily recommended, they are not optimal, they are not models, nor are they suggested—they are only samples. However, they do take advantage of allowable substitutions in order to reduce the University Core Curriculum requirement. As this curriculum is examined, keep in mind the order in which Computer Science electives are taken is subject to the course offerings in a given semester. Finally, tentative course offerings in the Department of Computer Science are also listed. You can use this tentative schedule to assist in planning a course of study.

Section IX contains useful information about the availability of UNIX accounts, a recommended computer system, and scholarships. Several important and useful phone numbers are listed in the last section.

II. Program Description

Computer science encompasses the theory, tools, and techniques by which information is derived, stored, manipulated, and communicated using computers. It deals particularly with the study of algorithms that are used to direct the computer and with the expression of these algorithms as programs. Of central concern is the study and further development of the computer systems, including both hardware and software that support the execution of these programs.
The Department of Computer Science offers two degree programs to undergraduate students - the Bachelor of Science and the Bachelor of Arts. The Bachelor of Science degree in Computer Science is accredited by the Computing Accreditation Commission (CAC) of the Accreditation Board for Engineering and Technology (ABET). The curriculum specified for the Bachelor of Science degree is more traditional and somewhat more flexible in that it prepares the student for a wide range of careers as well as for graduate degree programs in computer science. The Bachelor of Arts degree program is more specifically oriented toward the interdisciplinary aspect of computer science in which students select a secondary concentration other than computer science. One possible secondary concentration could be in the area of business applications which, in particular, is designed to enable students to pursue a fifth year of studies leading to an MBA degree.

In support of these degree programs, the department offers courses covering all the major areas of computer science including programming languages, operating systems, databases, computer networks, computer architecture, computer graphics, artificial intelligence, WEB application development, systems administration, software engineering, algorithms, and parallel programming. In addition, the department offers an undergraduate minor and service courses for students from other fields who will use computer science as a tool in their own areas. Students interested in computer science will be advised with respect to Computer Science courses by the department so they may profitably pursue their academic and professional interests.

The department enforces the following retention policy: a Computer Science major will not be permitted to enter any of the courses—220, 306, 311, 320, 330, 335, and 399—unless that student has achieved a grade point average of at least 2.00 for all required precedent Computer Science courses. Any exceptions to this policy will require the written approval of the department.

Permission to enroll in departmental courses is subject to the restriction that a student who receives a grade of F or WF three times in the same course cannot take the course again. An exception to this policy may be granted by written approval of the department, but such exceptions will be rare.

The department also enforces the following restriction on students repeating its courses: a student cannot repeat a course or its equivalent, in which a grade of B or better was earned, without the consent of the department.

Bachelor of Science Degree, College of Science

<table>
<thead>
<tr>
<th>Category</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Core Curriculum Requirements¹</td>
<td>41</td>
</tr>
<tr>
<td>College of Science Academic Requirements</td>
<td>10</td>
</tr>
<tr>
<td>Biological Sciences – 6 hours (Not University Core Curriculum courses)¹</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics – completed with Computer Science major</td>
<td></td>
</tr>
<tr>
<td>Physical Sciences – completed with Computer Science major</td>
<td></td>
</tr>
<tr>
<td>Supportive Skills – at least 6 hours</td>
<td>7</td>
</tr>
<tr>
<td>Mathematics 282 or 483 and one of English 290, 291, 491 or Linguistics 290</td>
<td></td>
</tr>
<tr>
<td>Requirements for Major in Computer Science²</td>
<td>63</td>
</tr>
<tr>
<td>Computer Science Core⁴</td>
<td>28</td>
</tr>
<tr>
<td>Computer Science 202, 215, 220, 306, 311, 320, 330, 335, 399 each with a grade of C or better</td>
<td></td>
</tr>
<tr>
<td>Computer Science Electives⁴, ⁵, ⁶</td>
<td>18</td>
</tr>
<tr>
<td>To build on the core and to provide breadth and depth, six 400-level Computer Science courses must be chosen.</td>
<td></td>
</tr>
<tr>
<td>Senior Project 498 and 499</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 150¹, ³, 221, 250</td>
<td>8</td>
</tr>
<tr>
<td>Laboratory Science Sequence¹</td>
<td>5</td>
</tr>
</tbody>
</table>
Physics 205A,B and 255A,B or Chemistry 200, 201 and 210, 211

Electives ... 6
Total.. 120

1A total of nine hours of biological science, mathematics and laboratory science coursework are accounted for in the 41-hour Core Curriculum requirement.
2The supportive skills are also required for a major.
3Prerequisite is Mathematics 111 or Mathematics 108 and 109. The elective hours are reduced by 3-6 hours for students who place into a course lower than calculus.
4At least half of the Computer Science credit hours must be taken at SIUC.
5300, 301, and 393 cannot be used to fulfill the elective requirement. Use of 391 requires departmental approval.
6Use of 490, 491, 492, or 493 requires departmental approval. At most one of 447, 449, 471, 472, 475, and 476 can be used as an elective.
7One of the six 400-level courses could be replaced by a 300-level Computer Science course.

Bachelor of Arts Degree, College of Science

University Core Curriculum Requirements1 ... 41
College of Science Academic Requirements... 12
Biological Sciences – 6 hours (Not University Core Curriculum courses)1 3
Mathematics – completed with Computer Science major
Physical Sciences – (3 hours in major) ... 3
Supportive Skills – 6 hours .. 6
Mathematics 282 and one of English 290, 291, 491 or Linguistics 290

Requirements for Major in Computer Science2 ... 62
Computer Science Core3 .. 25
 Computer Science 201, 202, 215, 220, 304/3056, 306, 330, 399 each with a grade of C or better
Computer Science Electives3, 4, 5 ... 18
To build on the Core and to provide breadth and depth, two additional 300-level and four 400-level Computer Science courses must be chosen.
Mathematics 1111 .. 1
Secondary Concentration7 .. 18
Eighteen credit hours approved by the Department of Computer Science in one of the following areas: engineering, science, education, liberal arts, or mass communication. Pre-med, pre-law, or a minor in any of the above areas may fully or partially satisfy this requirement depending on credit hours.

Electives .. 5
Total.. 120

1A total of 12 hours of biological science, economics, mathematics and laboratory science coursework are accounted for in the 41-hour Core Curriculum requirement. Mathematics 111 could be replaced by Mathematics 108 and 109, or by Mathematics 150.
2The supportive skills are also required for a major.
3At least half of the Computer Science credit hours must be taken at SIUC.
4300, 301, and 393 cannot be used to fulfill the elective requirement. Use of 391 requires departmental approval.
5Use of 490, 491, 492, or 493 requires departmental approval. At most one of 447, 449, 471, 472, 475, and 476 can be used as an elective.
6Either 304 or 305.
7MBA Foundation: Mathematics 150 (instead of Mathematics 111), Accounting 220, Finance 270 and 330, Management 304 or 318, Marketing 304, and Economics 2401 and 241. Management 304 allows a student to earn a minor in Business Administration. Management 318 is required for entry into the Master in Business Administration degree program.

Concentrations for BS and BA Programs

Computer Science majors can use their electives to form an optional concentration in five different computer science areas: computer graphics and game development; computer networks and
security; database and systems; software engineering and application development; or artificial intelligence and robotics. Computer Science majors must take three courses (out of their 400-level electives) from a particular topic to receive a concentration in that area. Concentrations will not appear on the diploma but will be stated on a certificate issued by the department. The list of the courses for each concentration is as follows:
- Computer Graphics and Game Development: CS 484, CS 485, CS 487
- Computer Networks and Security: CS 408, CS 410, CS 440, CS 441
- Database and Systems: CS 401, CS 406, CS 420, CS 430, CS 455
- Software Engineering and Application Development: CS 406, CS 412, CS 435, CS 484
- Artificial Intelligence and Robotics: CS 404, CS 436, CS 437

Minor

A minor consists of Computer Science 202, 215, 220, and at least nine hours of 300-level Computer Science coursework. At least nine of these hours must be taken at SIUC.

III. University Requirements

All students seeking a Baccalaureate degree at SIUC must satisfy the following requirements for graduation:
1. Complete a minimum of 120 semester hours of credit in approved courses. Of the 120 hours, at least 60 must be earned at a senior-level institution.
2. Complete 41 hours of the 120 in the University Core Curriculum. Methods are available for reducing this number.
3. Maintain a C average in all SIUC coursework and a C average in the major (2.0 on a 4.0 scale).
4. Satisfy residency requirements by completing 90 semester hours at SIUC or the last 30 semester hours at SIUC.

Additional details pertaining to University Core Curriculum Requirements are available in the Undergraduate Catalog at http://registrar.siu.edu/catalog/undergraduatetcatalog.html.

IV. College of Science Requirements

The College of Science degree requirements, as they pertain to Computer Science majors, fall into four categories: biological sciences, physical sciences, supportive skills and general requirements. The specifics are listed below:

Biological Sciences (6 hours)

Six semester hours in courses offered by the biological sciences departments in the college (Microbiology, Plant Biology, Physiology, and Zoology) are required. Biochemistry taken from the Department of Chemistry and Biochemistry will also satisfy this requirement. This requirement cannot be satisfied in whole or in part by University Core Curriculum courses. However, certain courses chosen to meet this requirement may substitute for some of the University Core Curriculum requirements. A list of suggested courses designed to fulfill this requirement follows:

Any 2 of the following 3 courses:
- PLB 200 (General Plant Biology)
- ZOOL 118 (Principles of Animal Biology)
- PHSL 201 (Human Physiology)*

PHSL 201 satisfies three hours of the College of Science biological sciences requirement and substitutes for three hours of University Core Curriculum biology IF IT IS NOT USED TO SATISFY THE HUMAN HEALTH REQUIREMENT.
Physical Sciences

Six semester hours in courses offered by the physical science departments of the college (Chemistry and Biochemistry, Geology and Physics) are required. This requirement cannot be satisfied in whole or in part by University Core Curriculum courses, but certain courses chosen to meet the requirement may also substitute for certain University Core Curriculum requirements.

Note that the Department of Computer Science requires a two-semester sequence of laboratory science courses for the B.S. degree (see Section VI) which also satisfies the College of Science physical sciences requirement.

Supportive Skills (6/7 hours)

Mathematics 483-4 (Mathematical Statistics in Engineering and Physical Sciences I) is required for the B.S. degree, while the B.A. requires Mathematics 282-3 (Introduction to Statistics). A third English composition course beyond ENGL 102 is required by both programs. The composition course must be chosen from the following list:

- ENGL 290 Intermediate Expository Writing
- ENGL 291 Intermediate Technical Writing
- ENGL 491 Technical Writing
- LING 290 Advanced English Composition for Foreign Students

General Requirements

At least 40 hours of the student's 120 hours for graduation must be at the 300- or 400-level. The total may include transfer credit for courses judged by the department involved to be equivalent to its upper division courses. At least 24 of these senior hours must be taken at SIUC.

V. Major Requirements

The Department of Computer Science's major requirements subdivide into four categories for each degree program:

Computer Science Core (B.S. - 28 hours; B.A. - 25 hours)

The department requires each of the following core courses for either program and each must be completed with a grade of C or better:

- **CS 202 – Introduction to Computer Science**
 The department's introductory course for majors taught on Pentium-based machines; currently using the Java language as the vehicle to introduce computer programming.

- **CS 215 – Discrete Mathematics**
 A course in discrete mathematics which gives students the necessary mathematical foundation for subsequent CS courses.

- **CS 220 – Programming with Data Structures**
 A data structures course taught on Pentium-based machines using the language Java.

- **CS 306 – Linux/UNIX Programming**
 This course uses the UNIX operating system and provides an in-depth coverage of the C language, which is used for the system programming projects in the course.

- **CS 330 – Introduction to the Design and Analysis of Algorithms**
 This course introduces some advanced data structures as they relate to file organization.

- **CS 399 – Social, Ethical, and Professional Issues in Computer Science**
 This course creates an awareness of the social, ethical and professional issues important to the field of computer science.
In addition, the B.S. degree requires the following courses to be completed with a grade of C or better:

- **CS 311** – The Theory and Implementation of Programming Languages
 A course based on programming language design and implementation.
- **CS 320** – Computer Organization and Architecture
 A course in assembly language and computer organization.
- **CS 335** – Operating Systems
 This course discusses different aspects of operating system design and implementation.

And B.A. degree requires the following course to be completed with a grade of C or better:

- **CS 201** – Problem Solving with Computers
 An introduction to problem solving using computers
- **CS 304** – Advanced Object-Oriented Programming
 Advanced features of object-oriented programming are covered in depth.
 OR
- **CS 305** – Software Development Practices
 Practices, tools and methodologies for development of software within the context of a team.

A major in Computer Science must satisfy the department's retention requirement in order to remain a major in the department. Specifically, permission to enroll in departmental courses is subject to the restriction that a student who receives a grade of F or WF three times in the same course cannot take the course again. An exception to this policy may be granted by written approval of the department, but such exceptions will be rare.

Computer Science Electives (18 hours)

Each Computer Science major pursuing a B.S. degree is required to take 18 hours of Computer Science courses in addition to those listed previously. Six 400-level Computer Science courses (one of which may be replaced by a 300-level course) must be chosen from the following list:

- **CS 401** Computer Architecture
- **CS 402** Theory and Applications of Computer Aided Design
- **CS 404** Autonomous Mobile Robots
- **CS 406** Basic Linux System Administration
- **CS 408** Applied Cryptography
- **CS 410** Computer Security
- **CS 412** Programming Distributed Applications
- **CS 416** Compiler Construction
- **CS 420** Distributed Systems
- **CS 430** Database Systems
- **CS 435** Software Engineering
- **CS 436** Artificial Intelligence I
- **CS 437** Intelligent Systems and Soft Computing
- **CS 438** Bioinformatics Algorithms
- **CS 440** Computer Networks
- **CS 441** Mobile and Wireless Computing
- **CS 451** Theory of Computing
- **CS 455** Advanced Algorithm Design and Analysis
- **CS 484** User Interface Design and Development
- **CS 485** Computer Graphics
- **CS 487** Software Aspects of Game Development

One of:

- **CS 447** Introduction to Graph Theory
- **CS 449** Introduction to Combinatorics
Students pursuing a B.A. degree are required to choose four Computer Science courses (12 hours) from the 400-level courses above and two Computer Science courses (6 hours) from the 300-level courses below:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 304</td>
<td>Advanced Object-Oriented Programming</td>
</tr>
<tr>
<td>CS 305</td>
<td>Software Development Practices</td>
</tr>
<tr>
<td>CS 311</td>
<td>The Theory and Implementation of Programming Languages</td>
</tr>
<tr>
<td>CS 315</td>
<td>Computer Logic and Digital Design</td>
</tr>
<tr>
<td>CS 335</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>CS 350</td>
<td>Web Application Development</td>
</tr>
</tbody>
</table>

Senior Project (B.S. - 4 hours)

Students pursuing a B.S. degree are required to take Senior Project. To fulfill this requirement, students would have to take CS 498 (1 credit hour) and CS 499 (3 credit hours) in two consecutive semesters. To take Senior Project, senior status in Computer Science, including completion of, or concurrent enrollment in, at least two other 400-level Computer Science courses, is required.

- CS 498 & 499 – Senior Project
 Selecting, planning, and implementing a team project.

Mathematics (B.S. - 11 hours; B.A. - 4 hours)

The B.A. degree requires only MATH 111 (Precalculus). The B.S. degree requires MATH 150 (Calculus I), MATH 221 (Introduction to Linear Algebra) and MATH 250 (Calculus II).

Note: MATH 282 or MATH 483, a four-hour statistics course, must be completed as part of the College of Science supportive skills requirement for both.

Science (8 hours) - Required for B.S. degree only

The department requires a two-semester sequence of laboratory science courses chosen from the following:

Sequence 1:
- PHYS 205A,B University Physics
- PHYS 255A,B University Physics Laboratory

Sequence 2:
- CHEM 200 Introduction to Chemical Principles
- CHEM 201 General Chemistry Laboratory I
- CHEM 210 General and Inorganic Chemistry
- CHEM 211 General Chemistry Laboratory II

Either sequence also satisfies the College of Science physical sciences requirement and substitutes for three hours of University Core Curriculum.

Secondary Concentration (18 hours) - Required for B.A. degree only

Eighteen credit hours approved by the Department of Computer Science in one of the following areas: engineering, science, education, liberal arts, or mass communication. Pre-med, pre-law or a minor in any of the above areas may fully or partially satisfy this requirement depending on credit hours.

MBA Foundation (as the secondary concentration): Mathematics 150 (instead of Mathematics 111), Accounting 220, Finance 270 and 330, Management 304 or 318, Marketing 304, and
Economics 2401 and 241. Management 304 allows a student to earn a minor in Business Administration. Management 318 is required for entry into the Master in Business Administration degree program.

VI. New Students and Advisement

New Students

If you are a high school graduate entering SIUC as a freshman, you can complete all degree requirements in the normal four years (or possibly less). Prior exposure to computers is not a prerequisite. However, the department does honor the Advanced Placement Test in Computer Science given by the College Board. Additionally, the department can grant proficiency credit, particularly for the first course (CS 202), through examinations given by the department's Undergraduate Program Director.

If you are transferring from a community college, you can complete the departmental requirements in five or six semesters. Less time may be required depending on time of entrance and prior preparation. More precise estimates may be given in individual cases. It should be noted, however, that an associate degree in data processing may not significantly reduce the number of semesters required.

A transfer student need not have taken calculus prior to entrance into the program, but it is desirable that the student have had suitable precalculus courses. Indeed, Math 111 (Precalculus) or its equivalent (Math 108 and Math 109) is a prerequisite to CS 215. Math 150 (Calculus I) is required of majors in the B.S. degree only.

Advisement

The Computer Science Undergraduate Program Director will meet with new admitted and transfer students to review your career objectives and help you outline a course of study to meet your goals. The Director is available for assistance to CS undergraduate majors at any time throughout their program of study. To make an appointment, call the CS Main Office at 618-536-2327.

Additionally, an Undergraduate Orientation seminar is conducted each fall semester. The seminar offers you an opportunity to gain familiarity with changes in the curriculum and an opportunity to ask questions regarding the curriculum, course offerings, advisement, registration, and departmental issues.

There are some Computer Science students who must meet with the Undergraduate Program Director. They are:

1. Students who are on academic probation.
2. Students who have less than a 2.00 average in the major.
3. Students deemed to be academically “at risk”.
4. Graduating seniors (with Major Check forms).

New Freshmen or Transfer Students:

Once admitted to the University and after the initial meeting with the Undergraduate Program Director, new freshmen and/or transfer students must make an appointment with an advisor in the College of Science Advisement Office. To see an advisor, call 536-5537 or stop by Neckers A185 at least two days in advance to make an appointment. This will allow the advisor time to review your transfer credit and set up the MATH placement testing, if needed.
Current Students:
The first two weeks of fall and spring semesters, the College of Science Advisement Office is open for walk-ins all day. If you have problems or questions, drop in at your convenience. No appointment is necessary. After the second week, there are two or three walk-in hours every day for problems and questions. If you need to see an advisor, call 536-5537 or stop by Neckers A185 to see when these times are available.

Make advisement/registration appointments early. During the second week of each semester, the College of Science Advisement Office begins making advisement/registration appointments for the next semester. Registering early can make a difference in obtaining the classes you want.

SalukiNet:
SalukiNet is a web-based information system available to all SIUC students. You can use it to register, obtain class schedules and grades, inquire about financial aid, and much more. All you need is your 9-digit SIUC student ID number and your 4-digit PIN (new students are initially assigned a random PIN and are normally informed of it in writing at the time of admission or registration). You are strongly urged to change your PIN as soon as possible in order to maintain the privacy of your records. SalukiNet is available at http://salukinet.siu.edu/. More information on SalukiNet and Web Registration is available at http://registrar.siu.edu/.

Important Facts

Adding and Dropping Classes:
Classes can be added during the first week of each semester. If you foresee any problems with a class, see your advisor for assistance.

If you find yourself overloaded, classes can be dropped until the end of the second week without affecting your record. Between the second week and the eighth week, classes can be dropped with a "W" (withdrawal) grade. This does not affect your grade point average. If you are having problems, talk to an advisor as early as possible.

Career Services:
At the beginning of your junior year, you should register with University Career Services to begin the job search process at http://careerservices.siuc.edu.

Graduation:
An application for graduation must be completed and submitted during the first two weeks of your last semester. You may obtain an application form from the Office of Graduation and Special Events, Woody Hall A117 or print the form at http://registrar.siuc.edu/pdf/GraduationApplication.pdf.

VII. Advisement Materials

Computer Science Course Listings

105-3 Introduction to Application Software.
This course is designed to provide a detailed exposure to various computer applications software including word processing, database management, spreadsheet, presentation, Web design software, and programming concepts. The course is designed to help students to better use the computer as a tool in their own fields and to help prepare students for Microsoft Office Specialist Certification examinations.

200B-3 Computer Concepts.
The course is designed to provide participants with a broad overview of computer concepts including key terminology and components of computer hardware, software, and operating
systems. Topics will include, but are not limited to computer architecture, peripheral devices, networking components, system software, information system analysis, application software including word processing, database management, spreadsheet, and presentation software. Discussion will also include the Internet and Web page development.

201-3 Problem Solving with Computers.
This course provides an introduction to problem solving using computers. It goes beyond basic computer literacy and application software experiences, but is less intensive than a first course devoted solely to programming. The course focuses on problem solving in the context of an introduction to computer programming and includes coverage of topics from computer literacy, word processing, spreadsheet and database packages. A preliminary treatment of the Internet and World Wide Web is also included.

202-4 Introduction to Computer Science.
An introduction to computers and programming using a high-level structured language including a discussion of programming constructs and data representation. Primary emphasis will be given to problem solving, algorithm design, and program development. Three one-hour lectures and one two-hour lab per week. Prerequisite: Mathematics 111 or equivalent with a grade of C or better.

215-4 Discrete Mathematics.
Introduction to topics relevant to the study of computer science including: number systems, sets, sequences, summations, logic and truth tables, proofs, functions, relations, matrix operations, combinations, permutations, counting techniques, discrete probability, algorithmic complexity, recurrence relations, Boolean algebra, simple combinational circuits, simplification techniques. Prerequisite: Mathematics 111 or equivalent with a grade of C or better.

220-4 Programming with Data Structures.
Advanced programming, data structures and algorithm design. Topics include advanced language features, data abstraction and object-oriented programming, recursion, stacks, queues, linked lists, trees and graphs, sorting and searching. The course meets for three lecture hours and two laboratory hours per week. Prerequisites: CS 202 and CS 215 each with a grade of C or better.

300-3 Introduction to Linux.
A gentle introduction to the Linux operating system. Computer programming experience is not required. Students will gain the knowledge and hands-on experience needed to install, configure, and use Linux. Emphasis will be placed on administration skills and security. Software for Linux will be surveyed, particularly to identify replacements for standard Windows applications. Prior experience with Windows or Macintosh operating systems is assumed.

301-3 Introduction to Visual Basic.
This course is designed to introduce students to the fundamentals of programming in Visual Basic. The topics include, but are not limited to, design and development of the user interface, development of algorithms, and writing computer programs. The course will cover the history of programming languages, object oriented programming, data types, arrays, control structures, string manipulation and Web-based applications.

304-3 Advanced Object-Oriented Programming.
Advanced features of object-oriented programming are covered in depth. The topics covered include, but are not limited to, the following: polymorphism, inheritance, overloading, generic programming, exception handling, file I/O, GUI development. A group project is an integral part of the course. Prerequisite: 220 with a grade of C or better.

305-3 Software Development Practices.
Practices, tools and methodologies for development of software within the context of a team. Agile software practices and modern development tools are used to build an enhanced understanding of object-oriented design principles, implementation, and testing to meet customer requirements. A team project is an integral part of this course. Prerequisite: CS 220 with C or better.
306-3 Linux/UNIX Programming.
This course will prepare students to develop software in and for Linux/UNIX environments. Topics to be covered include basic operating system concepts, effective command line usage, shell programming, the C language, programming development tools, system programming, network programming (client-server model and sockets), and GUI programming. Prerequisite: 220 with a grade of C or better.

311-3 The Theory and Implementation of Programming Languages.
Introduction to the theory and implementation of programming languages including finite automata, regular grammars, lexical analysis, parsing, syntax-directed translation, semantic analysis, binding variables, data types, static and dynamic scope, subprograms, abstraction, and concurrency. Study of object-oriented, functional, and logic programming languages. Lab work is essential. Prerequisite: 220 with a grade of C or better.

315-3 Computer Logic and Digital Design.
Introduction to switching algebra and its applications. Combinational logic and combinational circuit components. Sequential logic and sequential circuit components. Asynchronous sequential circuits. Prerequisite: 215 with a grade of C or better.

320-3 Computer Organization and Architecture.
Overview of the basic logic circuits needed in constructing a computer. Fundamental computer operations: machine and assembly language instructions, stacks, procedures and macros. The translation process: assembly, linking and loading. Hardware elements for processing, transferring, and storing information. Data path and control unit for a simple processor. Prerequisite: 220 with a grade of C or better.

330-3 Introduction to the Design and Analysis of Algorithms.
A detailed treatment of the design, analysis, and complexity of algorithms, including greedy algorithms, divide and conquer, dynamic programming, and limitations of algorithms as problems get larger or more complex. Prerequisite: 220 with a grade of C or better.

335-3 Operating Systems.
An extended treatment of the components of operating systems including process management, concurrency, memory management, device management, file management, and security. Prerequisite: 330 with a grade C or better.

350-3 Web Application Development.
A comprehensive introduction to languages and tools used to create client side and server side Web applications. Topics include, but are not limited to, markup languages, scripting languages, dynamic web pages, processing forms, server-side technologies, and database access. Prerequisite: CS 202 with a grade of C or better.

391-1 to 3 Current Topics in Computer Science.
Selected current topics from various fields of computer science. Prerequisite: Consent of instructor.

393-1 to 6 Internship in Computer Science.
Credit for participation in a formalized internship program involving computer science related work. Hours do not count toward requirements for CS major. Mandatory Pass/Fail. Prerequisite: Computer Science major and prior approval of the sponsoring agency and the Department of Computer Science.

399-1 Social, Ethical and Professional Issues in Computer Science.
Issues facing the computer professionals in society and industry. Social impact of information technology. Ethical responsibilities of the computer professional. Professional organizations: availability, membership, meetings, codes of conduct. Professional communications: written reports on case studies dealing with ethical decision making, term paper and an oral presentation. Prerequisite: 220 with a grade of C or better. Restricted to Computer Science majors.
401-3 Computer Architecture.
Review of logical circuit design. Hardware description languages. Algorithms for high speed addition, multiplication and division. Pipelined arithmetic. Implementation and control issues using PLA’s and microprogramming control. Cache and main memory design. Input/Output. Introduction to interconnection networks and multiprocessor organization. **Prerequisite:** 320 with a grade of C or better.

402-3 Theory and Applications of Computer Aided Design.
A study of algorithmic techniques which solve high complexity design rules. Graph algorithms and formulations, randomized solutions, techniques from operations research and statistics, computational geometry algorithms and data structures are introduced. The techniques are mainly applied on the physical design/automation problem for integrated circuits and systems. **Prerequisite:** 315 and 330 each with a grade of C or better.

404-3 Autonomous Mobile Robots.
This course is a comprehensive introduction to modern robotics with an emphasis on autonomous mobile robotics. Fundamental of sensors and actuators as well as algorithms for top level control are discussed. Multi-robotics and human-robot interaction issues are explored. A group project is an integral part of this course. **Prerequisite:** CS 330 with a grade of C or better.

406-3 Basic Linux System Administration.
This course will be an introduction to the administration of Linux systems, with emphasis on security for networked systems. Topics to be covered include: installation and configuration of Linux distributions, typical maintenance activities, and security measures for networked systems. Students will have access to lab machines for hands on practice. **Prerequisite:** CS 306 with a grade of C or better.

408-3 Applied Cryptography.
This course is a comprehensive introduction to modern cryptography, with an emphasis on the application and implementation of various techniques for achieving message confidentiality, integrity, authentication and non-repudiation. Applications to Internet security and electronic commerce will be discussed. All background mathematics will be covered in the course. **Prerequisites:** CS 330 with a grade of C or better and MATH 221.

410-3 Computer Security.
A broad overview of the principles, mechanisms, and implementations of computer security. Topics include cryptography, access control, software security and malicious code, trusted systems, network security and electronic commerce, audit and monitoring, risk management and disaster recovery, military security and information warfare, physical security, privacy and copyrights, and legal issues. **Prerequisite:** 306 with a grade of C or better.

412-3 Programming Distributed Applications.
This course uses advanced features of the Java programming language to develop networked, distributed, and web-based applications. Topics covered include, but are not limited to, sockets, datagrams, the Java security model, threads, multi-tier architectures, Java RMI, Java database connectivity, and Java-based mobile agents. **Prerequisite:** CS 306 with a grade of C or better.

416-3 Compiler Construction.
Introduction to compiler construction. Design of a simple complete compiler, including lexical analysis, syntactical analysis, type checking, and code generation. **Prerequisite:** 306 and 311 each with a grade of C or better.

420-3 Distributed Systems.
A top-down approach addressing the issues to be resolved in the design of distributed systems. Concepts and existing approaches are described using a variety of methods including case studies, abstract models, algorithms and implementation exercises. **Prerequisite:** CS 335.
430-3 Database Systems.
The course concentrates on the relational model and includes several query languages. Topics covered include normalization, database design, catalogs, transaction support, concurrency control, integrity support, backup and recovery, and security. Projects involve the use of both personal and enterprise database systems. **Prerequisite:** 330 with a grade of C or better.

435-3 Software Engineering.
Principles, practices and methodology for development of large software systems. Object-oriented principles, design notations, design patterns and coping with changing requirements in the software process. Experiences with modern development tools and methodologies. A team project is an integral part of this course. **Prerequisite:** 330 each with a grade of C or better; CS 306 with a grade of C or better recommended.

436-3 Artificial Intelligence I.
Search and heuristics, problem reduction. Predicate calculus, automated theorem proving. Knowledge representation. Applications of artificial intelligence. Parallel processing in artificial intelligence. **Prerequisite:** 311 and 330 each with a grade of C or better.

437-3 Intelligent Systems and Soft Computing.
An introduction to the field of computer intelligence and soft computing. It covers rule-based expert systems, fuzzy expert systems, artificial neural networks, evolutionary computation, and hybrid systems. Students will develop rule-based expert systems, design a fuzzy system, explore artificial neural networks, and implement genetic algorithms. **Prerequisite:** CS 330 with a grade of C or better.

438-3 Bioinformatics Algorithms.
This course is an introductory course on bioinformatics algorithms and the computational ideas that have driven them. The course includes discussions of different techniques that can be used to solve a large number or practical problems in biology. **Prerequisite:** 330 with a grade of C or better.

440-3 Computer Networks.
Design and analysis of computer communication networks. Topics to be covered include queuing systems, data transmission, data link protocols, topological design, routing, flow control, security and privacy, and network performance evaluation. **Prerequisite:** CS 330 each with a grade of C or better; CS 306 recommended.

441-3 Mobile and Wireless Computing.
Concepts of mobile and wireless systems are presented. These concepts include, but are not limited to, Routing and Medium Access for Mobile Ad hoc and Wireless Sensor Networks, Mobile IP, Wireless LAN and IEEE 802.11. Hands-on group lab experience is an integral component in the course. **Prerequisite:** CS 330 with a grade of C or better, or consent of the instructor.

447-3 Introduction to Graph Theory.
(Same as MATH 447.) Graph theory is an area of mathematics which is fundamental to future problems such as computer security, parallel processing, the structure of the World Wide Web, traffic flow and scheduling problems. It also plays an increasingly important role within computer science. Topics include: trees, coverings, planarity, colorability, digraphs, depth-first and breadth-first searches. **Prerequisite:** MATH 349 with C or better.

449-3 Introduction to Combinatorics.
(Same as MATH 449.) This course will introduce the student to various basic topics in combinatorics that are widely used throughout applicable mathematics. Possible topics include: elementary counting techniques, pigeonhole principle, multinomial principle, inclusion and exclusion, recurrence relations, generating functions, partitions, designs, graphs, finite geometry, codes and cryptography. **Prerequisite:** MATH 349 with C or better.

451-3 Theory of Computing.
The fundamental concepts of the theory of computation including finite state acceptors, formal grammars, Turing machines, and recursive functions. The relationship between grammars and
machines with emphasis on regular expressions and context-free languages. **Prerequisite:** 311 and 330 each with a grade of C or better or graduate standing.

455-3 Advanced Algorithm Design and Analysis.
An in-depth treatment of the design, analysis and complexity of algorithms with an emphasis on problem analysis and design techniques. **Prerequisite:** 330 with a grade of C or better or graduate standing.

471-3 Optimization Techniques.
(Same as MATH 471.) Introduction to algorithms for finding extreme values of nonlinear multivariable functions with or without constraints. Topics include: convex sets and functions; the arithmetic-geometric mean inequality; Taylor’s theorem for multivariable functions; positive definite, negative definite, and indefinite matrices; iterative methods for unconstrained optimization. **Prerequisite:** MATH 221 and MATH 250 with C or better.

472-3 Linear Programming.
(Same as MATH 472.) Introduction to finding extreme values of linear functionals subject to linear constraints. Topics include: recognition, formulation, and solution of real problems via the simplex algorithm; development of the simplex algorithm; artificial variables; the dual problem and the duality theorem; complementary slackness; sensitivity analysis; and selected applications of linear programming. **Prerequisite:** MATH 221 with C or better.

475-3 Numerical Analysis I.
(Same as MATH 475.) Introduction to theory and techniques for computation with digital computers. Topics include: solution of nonlinear equations; interpolation and approximation; solution of systems of linear equations; numerical integration. Students will use MATLAB to study the numerical performance of the algorithms introduced in the course. **Prerequisites:** MATH 221 and MATH 250 with C or better.

476-3 Numerical Analysis II.
(Same as MATH 476.) Continuation of CS 475. Topics include: solution of ordinary differential equations; computation of eigenvalues and eigenvectors; and solution of partial differential equations. Students will use MATLAB to study the numerical performance of the algorithms introduced in the course. **Prerequisites:** MATH 305 and MATH 475 with C or better.

484-3 User Interface Design and Development.
Problems and processes in the design of highly usable systems. Understanding stakeholders, requirements, tasks, prototyping, evaluation, guidelines and design process and heuristics. Interactive software concepts and implementation considerations. A group project is an integral part of this course. **Prerequisite:** 306 with a grade of C or better.

485-3 Computer Graphics.
Principles and techniques of computer graphics. Interactive graphics software development using a modern graphics standard. Topics include: primitives, transforms, clipping, modeling, viewing, rendering, texture, animation and ray tracing. A group project is an integral part of this course. **Prerequisite:** 306 with a grade of C or better; Mathematics 150 and 221 are recommended.

487-3 Software Aspects of Game Development.
This course focuses on software implementation and development aspects of game production including: software process, system architecture, frameworks, entity management and interaction design, game design, production and business issues as well as technical foundations in graphics modeling and rendering, collision detection, physics, artificial intelligence, and multiplayer techniques. **Prerequisite:** 330 with a grade of C or better.

490-1 to 6 (1 to 3 per semester) Readings.
Supervised readings in selected subjects. Not for graduate credit. Mandatory Pass/Fail. **Prerequisite:** consent of instructor and department.

491-1 to 6 Special Topics. (1 to 3 per topic).
Selected advanced topics from the various fields of computer science. **Prerequisite:** consent of instructor.

492-1 to 6 (1 to 3 per semester) Special Problems.
Individual projects involving independent work. **Prerequisite:** consent of department.
493-1 to 4 Seminar.
Supervised study. Preparation and presentation of reports. Prerequisite: consent of instructor.

498-1 Senior Project in Computer Science I.
Selecting and planning a team project which is representative of a project graduates may encounter in their professional employment. This involves team formation, project selection, project planning, proposal writing, and proposal presentation. Prerequisite: Senior status in Computer Science, including completion of or concurrent enrollment in at least two other 400-level Computer Science courses.

499-3 Senior Project in Computer Science II.
A continuation of CS 498. An exercise in the design, implementation, documentation, and deployment of a group project culminating in a presentation to the computer science faculty. Prerequisite: CS 498.
Indicates a course is prerequisite for course or courses below it. (Example 311 is a prerequisite for 416, 436, and 451)

Indicates course has more than one prerequisite. (Example: 420 has prerequisites of 306, 320, and 330)

All courses under the thick black line have a prerequisite of CS220
Programming Load and Mathematical Level of Sophistication

The levels in a particular course may vary from one instructor to another and may even vary from term to term with a particular instructor. The following levels should be viewed as rough estimates.

<table>
<thead>
<tr>
<th>Course</th>
<th>Programming Load</th>
<th>Mathematical Level</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>0</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>200B</td>
<td>0</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>201</td>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>202</td>
<td>2</td>
<td>1</td>
<td>Mathematics 111</td>
</tr>
<tr>
<td>215</td>
<td>0</td>
<td>2</td>
<td>Mathematics 111</td>
</tr>
<tr>
<td>220</td>
<td>3</td>
<td>2</td>
<td>202 and 215</td>
</tr>
<tr>
<td>300</td>
<td>0</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>301</td>
<td>2</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>304</td>
<td>3</td>
<td>1</td>
<td>220</td>
</tr>
<tr>
<td>305</td>
<td>3</td>
<td>1</td>
<td>220</td>
</tr>
<tr>
<td>306</td>
<td>3</td>
<td>1</td>
<td>220</td>
</tr>
<tr>
<td>311</td>
<td>2</td>
<td>2</td>
<td>220</td>
</tr>
<tr>
<td>315</td>
<td>0</td>
<td>2</td>
<td>215</td>
</tr>
<tr>
<td>320</td>
<td>1</td>
<td>1</td>
<td>220</td>
</tr>
<tr>
<td>330</td>
<td>3</td>
<td>2</td>
<td>220</td>
</tr>
<tr>
<td>335</td>
<td>2</td>
<td>1</td>
<td>330</td>
</tr>
<tr>
<td>350</td>
<td>2</td>
<td>1</td>
<td>220</td>
</tr>
<tr>
<td>399</td>
<td>0</td>
<td>0</td>
<td>220; Restricted to CS majors.</td>
</tr>
<tr>
<td>401</td>
<td>0</td>
<td>1</td>
<td>320</td>
</tr>
<tr>
<td>402</td>
<td>1</td>
<td>2</td>
<td>315 and 330</td>
</tr>
<tr>
<td>404</td>
<td>0</td>
<td>1</td>
<td>330</td>
</tr>
<tr>
<td>406</td>
<td>1</td>
<td>1</td>
<td>306</td>
</tr>
<tr>
<td>408</td>
<td>1</td>
<td>2</td>
<td>330 and MATH 221 or equivalents</td>
</tr>
<tr>
<td>410</td>
<td>1</td>
<td>2</td>
<td>306</td>
</tr>
<tr>
<td>412</td>
<td>3</td>
<td>1</td>
<td>306</td>
</tr>
<tr>
<td>416</td>
<td>3</td>
<td>0</td>
<td>306 and 311</td>
</tr>
<tr>
<td>420</td>
<td>2</td>
<td>2</td>
<td>306, 320 and 330</td>
</tr>
<tr>
<td>430</td>
<td>1</td>
<td>1</td>
<td>330</td>
</tr>
<tr>
<td>435</td>
<td>3</td>
<td>0</td>
<td>306 and 330</td>
</tr>
<tr>
<td>436</td>
<td>2</td>
<td>1</td>
<td>311 and 330</td>
</tr>
<tr>
<td>437</td>
<td>2</td>
<td>1</td>
<td>330</td>
</tr>
<tr>
<td>438</td>
<td>2</td>
<td>2</td>
<td>330</td>
</tr>
<tr>
<td>440</td>
<td>1</td>
<td>2</td>
<td>306</td>
</tr>
<tr>
<td>441</td>
<td>2</td>
<td>2</td>
<td>330</td>
</tr>
<tr>
<td>447</td>
<td>0</td>
<td>3</td>
<td>Mathematics 349</td>
</tr>
<tr>
<td>449</td>
<td>0</td>
<td>3</td>
<td>Mathematics 349</td>
</tr>
<tr>
<td>451</td>
<td>0</td>
<td>2</td>
<td>311 and 330</td>
</tr>
<tr>
<td>455</td>
<td>1</td>
<td>2</td>
<td>330</td>
</tr>
<tr>
<td>471</td>
<td>1</td>
<td>2</td>
<td>Mathematics 221 and 250</td>
</tr>
<tr>
<td>472</td>
<td>1</td>
<td>2</td>
<td>Mathematics 221</td>
</tr>
<tr>
<td>475</td>
<td>1</td>
<td>3</td>
<td>Mathematics 221 and 250</td>
</tr>
<tr>
<td>476</td>
<td>1</td>
<td>3</td>
<td>Mathematics 305 and 475</td>
</tr>
<tr>
<td>484</td>
<td>2</td>
<td>1</td>
<td>306</td>
</tr>
<tr>
<td>485</td>
<td>2</td>
<td>2</td>
<td>306; Mathematics 150 and 221 recommended</td>
</tr>
<tr>
<td>498</td>
<td>0</td>
<td>3</td>
<td>Senior status in CS with completion or concurrent enrollment in at least 2 other 400-level CS courses</td>
</tr>
<tr>
<td>499</td>
<td>0</td>
<td>3</td>
<td>Mathematics 349</td>
</tr>
</tbody>
</table>

Legend: 0 = none to slight 1 = slight to moderate 2 = moderate 3 = heavy
Sample Curriculum

The curriculums below are presented only as samples. In no way are these model curriculums or even recommended curriculums. These curriculums can and should be tailored to a student’s background and preparation. For example, one may have the ability to take CS 202 and CS 215 the first semester of the freshman year if he/she has the background equivalent to MATH 111. These sample curriculums do take advantage of allowable substitutes for University Core Curriculum courses in order to reduce requirements. Keep in mind that the order in which Computer Science electives are taken is subject to the course offerings in a given semester.

Bachelor of Science Degree

Year 1

Semester 1 (13 cr. hrs.)
- ENGL 101 English Composition I 3
- MATH 111 Precalculus 4
- PHIL 105 Elementary Logic 3
- PHSL 201 Human Physiology 3

Semester 2 (18 cr. hrs.)
- ENGL 102 English Composition II 3
- MATH 150 Calculus I 4
- CS 215 Discrete Mathematics 4
- SPCM 101 Introduction to Oral Communications: Speech, Self and Society 3
- CS 202 Introduction to Computer Science 4

Year 2

Semester 1 (18 cr. hrs.)
- CS 220 Programming with Data Structures 4
- ENGL 290 Intermediate Expository Writing 3
- MATH 250 Calculus II 4
- PHYS 205A University Physics 3
- PHYS 255A University Physics Laboratory 1
- Select Humanities 3

Semester 2 (16 cr. hrs.)
- CS 311 The Theory and Implementation of Programming Languages 3
- Select Social Science 3
- MATH 221 Introduction to Linear Algebra 3
- PHYS 205B University Physics 3
- PHYS 255B University Physics Laboratory 1
- CS 306 Linux/Unix Programming 3
Year 3

Semester 1 (14 cr. hrs.)
- CS 320 Computer Organization and Architecture 3
- CS 330 Introduction to the Design and Analysis of Algorithms 3
- HED 101 Foundations of Human Health 2
- Select Fine Arts 3
- Select Social Science 3

Semester 2 (14/15 cr. hrs.)
- CS 335 Operating Systems 3
- CS 399 Social, Ethical and Professional Issues in Computer Science 1
- CS 4XX CS Elective 3
- MATH 282/ MATH 483 Introduction to Applied Statistics / OR Mathematical Statistics in Engineering and Physical Sciences 3/ 4
- PLB 200/ ZOOL 118 General Plant Biology/ OR Principles of Animal Biology 4

Year 4

Semester 1 (15 cr. hrs.)
- CS 498 Senior Project in Computer Science I 1
- CS 4XX CS Elective 3
- CS 4XX CS Elective 3
- CS 4XX CS Elective 3
- Select Multicultural 3
- Select Free Elective 2

Semester 2 (12 cr. hrs.)
- CS 499 Senior Project in Computer Science II 3
- CS 4XX CS Elective 3
- CS 4XX CS Elective 3
- Select Interdisciplinary 3

--

Bachelor of Arts Degree

Year 1

Semester 1 (13 cr. hrs.)
- CS 201 Problem Solving with Computers 3
- ENGL 101 English Composition I 3
- MATH 111 Precalculus 4
- PHIL 105 Elementary Logic 3

Semester 2 (14 cr. hrs.)
- CS 202 Introduction to Computer Science 4
- CS 215 Discrete Mathematics 4
- ENGL 102 English Composition II 3
- SPCM 101 Introduction to Oral Communications: Speech, Self and Society 3
Year 2

Semester 1 (17 cr. hrs.)
- CS 220 Programming with Data Structures 4
- ECON 240 Introduction to Microeconomics 3
- HED 101 Foundations of Human Health 2
- MATH 150 Calculus I 4
- PHYS 203A College Physics 3
- PHYS 253A College Physics Laboratory 1

Semester 2 (15 cr. hrs.)
- CS 3XX CS Elective 3
- ECON 241 Introduction to Macro Economics 3
- ENGL 290 Intermediate Expository Writing 3
- PHYS 203B College Physics 3
- Select Humanities 3

Year 3

Semester 1 (15 cr. hrs.)
- CS 304/ Advanced Object-Oriented Programming OR 3
- CS 305 Software Development Practices
- CS 3XX CS Elective 3
- CS 330 Introduction to the Design and Analysis of Algorithms 3
- Select Fine Arts 3
- Select Social Science 3

Semester 2 (16 cr. hrs.)
- ACCT 220 Accounting I 3
- CS 306 Linux/UNIX Programming 3
- CS 4XX CS Elective 3
- MATH 282 Introduction to Statistics 3
- PLB 200/ General Plant Biology OR 3
- ZOOL 118 Principles of Animal Biology 4

Year 4

Semester 1 (16 cr. hrs.)
- CS 399 Social, Ethical and Professional Issues in Computer Science 1
- CS 4XX CS Elective 3
- FIN 270 The Legal and Social Environment of Business 3
- MGMT 304/ Introduction to Management OR 3
- MGMT 318 Production-Operations Management
- MKTG 304 Marketing Management 3
- Select Multicultural 3

Semester 2 (15 cr. hrs.)
- CS 4XX CS Elective 3
- CS 4XX CS Elective 3
- PHSL 201 Human Physiology 3
- FIN 330 Introduction to Finance 3
- Select Interdisciplinary 3
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Summer 2012</th>
<th>Fall 2012</th>
<th>Spring 2013</th>
<th>Summer 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td></td>
<td>✓</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>200B</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>220</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>301</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>304</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>306</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>311</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>315</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>330</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>335</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>350</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>399</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>402</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>404</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>406</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>408</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>410</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>412</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>416</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>420</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>430</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>435</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>436</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>437</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>438</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>440</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>441</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>449</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>451</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>455</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>471</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>472</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>475</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>476</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>484</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>485</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>487</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>491</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>498</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>499</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

✓ – Students should anticipate this course being offered
* – Course will be offered only if funding permits.
<table>
<thead>
<tr>
<th>Year</th>
<th>Fall Semester</th>
<th>Spring Semester</th>
<th>Summer Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Record of Courses and Grades—BS Degree

UNIVERSITY CORE

<table>
<thead>
<tr>
<th>Hrs.</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 hrs.</td>
<td></td>
</tr>
</tbody>
</table>

Foundation Skills

<table>
<thead>
<tr>
<th>ENGL 101, 120 or LING 101</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 102 or LING 102</td>
<td>3</td>
</tr>
<tr>
<td>MATH*</td>
<td></td>
</tr>
<tr>
<td>SPCM 101</td>
<td>3</td>
</tr>
</tbody>
</table>

Fine Arts (3 hrs.)

Choose 1 of AD 100A,B, 101, CP 101, ENGL 119, 206A,B, FL 100A,B,C, HIST 201, MUS 103, THEA 101, MUS 257A,B, THEA 220

| 3 |

Human Health (2 hrs.)

Choose 1 of FN 101, BIOL 202, HED 101, PE 101, PHSL 201, HCP 241, PE 201, PHSL 310

| 2 |

Humanities (6 hrs.)

Choose 2 from list on page 5 or 6

Choose 1 of these sequences

1. ENGL 121 and 204
2. FR 101A and 101B
3. GER 101A and 101B
4. HIST 101A and 101B
5. PHIL 103A and 103B
6. AD 207 A,B,C (choose 2)

| 6 |

Science (6 hrs.)

COS physical and biological science requirements will substitute

Social Science (6 hrs.)

Choose 2 from list on page 6

| 6 |

Multicultural (3 hrs.)

Choose 1 from list on page 6

| 3 |

Interdisciplinary (3 hrs.)

Choose 1 from list on page 7

| 3 |

COS REQUIREMENTS

Biological Science (6 hrs.)

Choose 2 from: PHSL 201, PLB 200, ZOOL 118

| 3 |

Supportive Skills (6/7 hrs.)

Math 282 or MATH 483

| 3/4 |

Choose 1 of ENGL 290, 291, 491 or LING 290

| 3 |

CS MAJOR REQUIREMENTS

<table>
<thead>
<tr>
<th>Hrs.</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 hrs.</td>
<td></td>
</tr>
</tbody>
</table>

CS Core (28 hrs.)

CS 202	4
CS 215	4
CS 220	4
CS 306	3
CS 311	3
CS 320	3
CS 330	3
CS 335	3
CS 399	1

All of the above require a “C” or better and a cumulative “C” average.

CS Electives (18 hrs.)

Choose 1 of ENGL 290, 291, 491 or LING 290

| 6 |

Mathematics (11 hrs.)

MATH 150	4
MATH 221	3
MATH 250	4

Physical Science (8 hrs.)

Choose 1 of the following combinations:

1. PHYS 205 A,B and PHYS 255 A,B
2. CHEM 200, 201 and CHEM 210, 211

| 8 |

1 Can be reduced by courses taken to satisfy University Core Curriculum requirements.

2 Courses taken to fulfill the CS Major Science Requirement will also fulfill the COS Physical Science Requirement.

3 Some courses fulfill multiple requirements. Degree requirements are 120 hours.
Record of Courses and Grades – BA Degree
(MBA CONCENTRATION)

<table>
<thead>
<tr>
<th>UNIVERSITY CORE</th>
<th>Hrs.</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation Skills (12 hrs.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 101, 120 or LING 101</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENGL 102 or LING 105</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MATH 111<sup>1</sup></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SPCM 101</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fine Arts (3 hrs.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose 1 of AD 100A,B, 101, CP 101, ENGL 119, 206A,B, FL 100A,B,C, HIST 201, MUS 103, THEA 101, MUS 257A,B, THEA 220</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Human Health (2 hrs.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose 1 of FN 101, BIOL 202, HED 101, PE 101, PHSL 201, HCP 241, PE 201, PHSL 310</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Humanities (6 hrs.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose 2 from list on page 5 OR</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Choose 1 of these sequences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. ENGL 121 and 204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. FR 101A and 101B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. GER 101A and 101B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. HIST 101A and 101B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. PHIL 103A and 103B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. AD 207 A, B, C (choose 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science (6 hrs.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COS physical and biological science requirements will substitute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Science (6 hrs.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose 2 from list on page 6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Multicultural (3 hrs.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose 1 from list on pages 6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Interdisciplinary (3 hrs.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose 1 from list on page 7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COS REQUIREMENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological Science (6 hrs.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose 2 from: PHSL 201, PLB 200, ZOOL 118</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Supportive Skills (6 hrs.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 282</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Choose 1 of ENGL 290, 291, 491 or LING 290</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CS MAJOR REQUIREMENTS</th>
<th>Hrs.</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS Core (25 hrs.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 201</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CS 202</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CS 215</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CS 220</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CS 304 or 305</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CS 306</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CS 330</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CS 399</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

All of the above require a “C” or better and a cumulative “C” average.

CS Electives (18 hrs.)		
CS 3 __ __	3	
CS 3 __ __	3	
CS 4 __ __	3	
CS 4 __ __	3	
CS 4 __ __	3	

| Mathematics (4 hrs.) | | |
| MATH 150 | 4 | |

Physical Science (8 hrs.)^{1,2}		
Choose 1 of the following:		
1. PHYS 205 A,B and PHYS 255 A,B	8	
2. CHEM 200, 201 and CHEM 210, 211		

Secondary Concentration (24 hrs.)		
ACCT 220	3	
ECON 240	3	
ECON 241	3	
FIN 270	3	
FIN 330	3	
MGMT 304 or 318	3	
MKTG 304	3	

¹Can be reduced by courses taken to satisfy University Core curriculum requirements.

²Some courses fulfill multiple requirements. Degree requirements are 120 hours.
VIII. Other Important Information

Computer Science Accounts
All Computer Science majors at SIUC are entitled to an account on the department’s LINUX system and Windows system. This account can be used to access the computers in the labs of the Department of Computer Science and is kept as long as the student is actively pursuing a major in Computer Science. The account will be dispatched in class by the instructor.

Departmental Scholarships
The department offers a minimum of three $800 scholarships. Each scholarship is disbursed in two equal parts of $400 each for the Fall and Spring semesters. Applications may be obtained from the department.

Two scholarships are awarded to undergraduate students who are currently enrolled at SIUC and who have made significant progress toward a major in Computer Science. These awards are based on the following criteria:
1. Completion of at least CS 202, CS 215, and CS 220 or their equivalents.
3. Current GPA of 3.50 in the major.
4. Student must be enrolled as a full-time Computer Science major at SIUC during the award period.

The third scholarship is awarded to a transfer student from an Illinois community college who has made significant progress toward a major in Computer Science. This award is based on the following criteria:
1. Admission to SIUC for the Fall semester as a Computer Science major.
2. Completion of an associate’s degree prior to enrollment at SIUC.
3. Completion of the equivalents of CS 202 and either CS 215 or CS 220 prior to enrollment at SIUC.
5. Student must be enrolled as a full-time Computer Science major at SIUC during the award period.

Other scholarships are available. Contact the College of Science Dean’s Office and New Student Admission Services for additional information.

Scholarship for High School Seniors
The Department of Computer Science also offers $2000 scholarships for selected high school seniors who enroll at SIUC with a major in Computer Science. Each scholarship is worth $500 per semester (Fall and Spring) for four semesters. The funds will be applied toward tuition and/or fees.

Selection will be based on a candidate’s entire academic and extracurricular record. Minimum requirements are a composite ACT score of at least 27, a math ACT score of at least 27, and a class ranking in the top 25%.

In order to retain a scholarship, a student must do the following:
- Maintain an overall GPA of at least 3.0 (out of 4.0)
- Maintain a GPA in Computer Science (CS) courses of at least 3.25
- Pass an average of at least 27 semester hours per academic year (Fall through Summer)
- Successfully complete at least two CS courses per year
- Have successfully completed at least eight CS courses by the end of the third year
- Maintain enrollment status as a full-time student and a CS major
IX. University Contact Information

Achieve Program:
Northwest Annex Bldg. C
(618) 453-2595
http://www.siu.edu/~achieve/

Bursar:
Woody B6
(618) 453-2221
http://www.siu.edu/~bursar
bursar@siu.edu

College of Science Advisement:
Neckers A185
(618) 536-5537
http://www.science.siu.edu/advisement/index.html
advise@cos.siu.edu

College of Science Dean’s Office:
Neckers A157
(618) 536-6666
http://www.science.siu.edu/index.html
dean@cos.siu.edu

Disability Support Services:
Woody B150
(618) 453-5738
TDD (618) 453-2293
http://www.siu.edu/~dss/

Financial Aid:
Woody Hall, B-wing, 3rd Floor
(618) 453-4334
http://www.siu.edu/~fao
fao@siu.edu

Identification Cards:
Student Center
(618) 536-3351

Information Technology:
(618) 453-5155 (Customer Service Center)
http://www.infotech.siu.edu/
custserv@siu.edu

International Programs and Services:
Northwest Annex Building B
(618) 536-7771
http://www.ips.siu.edu/index.html

Morris Library:
(618) 453-2531
http://www.lib.siu.edu/hp/

New Student Programs:
(618) 536-4405
http://www.newstudent.siu.edu/

Non-Traditional Student Services:
Student Center, 3rd Floor
(618) 453-5714
studdev@siu.edu

Pre-Major Advisement Center:
Woody C117
(618) 453-4351
http://www.siu.edu/~pmac

Records and Registration:
Woody A104
(618) 453-4381
http://registrar.siu.edu/
registrar@siu.edu

Saluki Express Bus Service:
(618) 536-3351
http://www.siu.edu/~salukiexpress/

SalukiNet:
http://salukinet.siu.edu/

Student Health Programs:
Kesnar Hall
(618) 453-3311
http://www.siu.edu/~shp/

University Career Services:
Woody B204
(618) 453-2391
http://www.siu.edu/~ucs/
ucsc@siu.edu

University Core Curriculum:
Faner 2512
(618) 453-3468
http://www.siu.edu/~corecurr/
corecurr@siu.edu

Undergraduate Admissions:
(618) 536-4405
http://admissions.siu.edu
joinsiuc@siu.edu

University Honors:
Faner 3341
(618) 453-2824
http://www.siu.edu/~honors/
honors@siu.edu

University Housing:
Washington Square D
(618) 453-2301
http://www.housing.siu.edu/

Veterans Affairs:
Woody B353
(618) 453-2791
X. Departmental Contact Information

Undergraduate Program Director
Department of Computer Science
Faner 2125 – Mail Code 4511
Southern Illinois University Carbondale
1000 Faner Drive
Carbondale, IL 62901-4511 USA

Phone: (618) 536-2327
E-mail: csinfo@cs.siu.edu
FAX: (618) 453-6044
Home page: http://www.cs.siu.edu/
SIUC home page: http://www.siuc.edu/

Revision date: 7/12/2012